Arsenic-induced dysfunction in relaxation of blood vessels.
نویسندگان
چکیده
Several epidemiological studies have suggested that exposure to arsenic is strongly correlated with the development of cardiovascular diseases such as hypertension. To determine whether arsenic affects vasomotor tone in blood vessels, we investigated the effect of arsenic on vasorelaxation using isolated rat aortic rings in an organ-bath system. Treatment with arsenite inhibited acetylcholine-induced relaxation of the aortic rings in a concentration-dependent manner, whereas several other arsenic species did not have any effect. Consistent with these findings, the levels of guanosine 3',5'-cyclic monophosphate (cGMP) in the aortic rings were significantly reduced by arsenite treatment. In cultured human aortic endothelial cells, treatment with arsenite resulted in a concentration-dependent inhibition of endothelial nitric oxide synthase (eNOS). In addition, higher concentrations of arsenite decreased the relaxation induced by sodium nitroprusside (an NO donor) and 8-Br-cGMP (a cGMP analog) in aortic rings without endothelium. These in vitro results indicate that arsenite is capable of suppressing relaxation in blood vessels by inhibiting eNOS activity in endothelial cells and by impairing the relaxation machinery in smooth muscle cells. In vivo studies revealed that the reduction of blood pressure by acetylcholine infusion was significantly suppressed after arsenite was administered intravenously to rats. These data suggest that an impairment of vasomotor tone due to arsenite exposure may be a contributing factor in the development of cardiovascular disease.
منابع مشابه
Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats
Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...
متن کاملارزیابی فعالیت آنزیم نیتریک اکسید سنتتاز در سلولهای آندوتلیال آئورت موشهای صحرایی سالم و دیابتی به روش هیستوشیمیایی NADPH دیافورزیز
Impaired endothelium-dependent relaxation of blood vessels is a common feature in diabetes but the exact underlying mechanisms have not yet been clarified. In the present study, endothelium-dependent vasorelaxation of aortic rings were evaluated in vitro in streptozocin-induced diabetic and age-matched control rats. Moreover, NO synthase activity of aortic endothelial cells was asse...
متن کاملSyzygium cumini Seed Extract Ameliorates Arsenic-Induced Blood Cell Genotoxicity and Hepatotoxicity in Wistar Albino Rats
Background: Arsenic is a well-documented human carcinogen widely distributed in the environment. Chronic exposure of humans to inorganic arsenicals causes many adverse health effects. The present work was conducted to evaluate the protective effect of Syzygium cumini seed extract (SCE) on arsenic-induced genotoxicity and hepatotoxicity in Wistar albino rats. Methods: Rats were randomly divide...
متن کاملRole of GABAB Receptor and L-Arg in GABA- Induced Vasorelaxation in Non-diabetic and Streptozotocin-Induced Diabetic Rat Vessels
Background: Hypertension is considered an independent risk factor for cardiovascular mortality in diabetic patients. The present study was designed to determine the role of gamma amino butyric acid B (GABAB) receptor and L-arginine (L-Arg) in GABA-induced vasorelaxation in normal and streptozotocin-induced diabetic rat vessels. Methods: Diabetes was induced by a single i.p. injection of strepto...
متن کاملLow level arsenic promotes progressive inflammatory angiogenesis and liver blood vessel remodeling in mice.
The vascular effects of arsenic in drinking water are global health concerns contributing to human disease worldwide. Arsenic targets the endothelial cells lining blood vessels, and endothelial cell activation or dysfunction may underlie the pathogenesis of both arsenic-induced vascular diseases and arsenic-enhanced tumorigenesis. The purpose of the current studies was to demonstrate that expos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental Health Perspectives
دوره 111 شماره
صفحات -
تاریخ انتشار 2003